Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
BMC Geriatr ; 22(1): 666, 2022 08 13.
Article in English | MEDLINE | ID: covidwho-2002116

ABSTRACT

BACKGROUND: Mindfulness meditation is a form of mind-body intervention that has increasing scientific support for its ability to reduce age-related declines in cognitive functioning, improve affective health, and strengthen the neural circuitry supporting improved cognitive and affective health. However, the majority of existent studies have been pilot investigations with small sample sizes, limited follow-up data, and a lack of attention to expectancy effects. Here, we present the study design of a Phase I/II, efficacy trial-HealthyAgers trial-that examines the benefits of a manualized mindfulness-based stress reduction program in improving attentional control and reducing mind-wandering in older adults. METHODS: One hundred fifty older adults (ages 65-85 years) will be randomized into one of two groups: an eight-week mindfulness program or an eight-week, placebo-controlled, lifestyle education program. Behavioral and neuroimaging assessments are conducted before and after the training. Participants are then invited to booster sessions once every three months for a period of 12 months with post-intervention follow-up assessments conducted at 6-months and 12-months. The primary outcomes for the study are behavioral measures of attentional control and mind-wandering. Additional, secondary outcomes include network strength in an a priori defined neuromarker of attentional control, fluid and everyday cognition, emotion regulation strategy use, and markers of inflammation. DISCUSSION: This study will establish the efficacy of a group-based, low-cost mind-body intervention for the inter-related facets of attentional control and mind-wandering in older adults. Strengths of this study include a well-designed, placebo-controlled comparison group, use of web/mobile application to track study adherence, and longitudinal follow-up. TRIAL REGISTRATION: Clinicaltrials.gov (# NCT03626532 ). Registered August 4, 2018.


Subject(s)
Attention , Mindfulness , Stress, Psychological , Aged , Aged, 80 and over , Attention/physiology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Mindfulness/methods , Randomized Controlled Trials as Topic , Research Design , Stress, Psychological/prevention & control , Stress, Psychological/psychology
2.
Future Oncol ; 18(24): 2627-2638, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1957139

ABSTRACT

Patients with advanced, recurrent or metastatic cancer have poor prognosis despite treatment advancements. Vesicular stomatitis virus (VSV)-glycoprotein (GP; BI 1831169) is a chimeric VSV with its neurotropic glycoprotein G replaced by the non-neurotropic GP of the lymphocytic choriomeningitis virus. This live, recombinant oncolytic virus has demonstrated preclinical efficacy as a viral-based immunotherapy due to its interferon-dependent tumor specificity, potent oncolysis and stimulation of antitumor immune activity. Co-administration of the immune checkpoint inhibitor, ezabenlimab (BI 754091), alongside VSV-GP may synergistically enhance antitumor immune activity. Here, we describe the rationale and design of the first-in-human, phase I, dose-escalation study of VSV-GP alone and in combination with the immune checkpoint inhibitor ezabenlimab in patients with advanced, metastatic or relapsed and refractory solid tumors (NCT05155332).


There is a need to develop new treatments for people living with cancer. Immunotherapy is a type of medicine that works by helping the body's natural defenses, known as the immune system, to destroy cancer cells. There are different types of immunotherapies such as oncolytic viruses (OVs) and immune checkpoint inhibitors (ICIs). OVs are viruses that may help destroy cancer cells while leaving normal cells unharmed. They work by replicating within cancer cells; this causes them to burst and release more of the virus which then infects nearby cancer cells and activates the body's immune system. ICIs may be able to work together with OVs to amplify this effect. Vesicular stomatitis virus (VSV)-glycoprotein (GP) is a type of OV that has been shown to effectively destroy cancer cells in animal studies. This first-in-human study will investigate VSV-GP on its own and in combination with an ICI called ezabenlimab for the treatment of late-stage cancer or cancer that has spread to multiple parts of the body. Here, we describe the background and design of this study in progress which aims to find out if VSV-GP alone or in combination with ezabenlimab is effective against cancer, the suitable dose and if any side effects occur. Trial Registration Number: NCT05155332 (ClinicalTrials.gov).


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Antibodies, Monoclonal , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Glycoproteins , Humans , Immune Checkpoint Inhibitors , Neoplasms/genetics , Neoplasms/therapy , Oncolytic Viruses/genetics
3.
Cell Rep Med ; 3(7): 100685, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1937310

ABSTRACT

The Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus (MERS-CoV). In follow up to a phase 1 trial, we perform a longitudinal analysis of immune responses following immunization with the modified vaccinia virus Ankara (MVA)-based vaccine MVA-MERS-S encoding the MERS-CoV-spike protein. Three homologous immunizations were administered on days 0 and 28 with a late booster vaccination at 12 ± 4 months. Antibody isotypes, subclasses, and neutralization capacity as well as T and B cell responses were monitored over a period of 3 years using standard and bead-based enzyme-linked immunosorbent assay (ELISA), 50% plaque-reduction neutralization test (PRNT50), enzyme-linked immunospot (ELISpot), and flow cytometry. The late booster immunization significantly increases the frequency and persistence of spike-specific B cells, binding immunoglobulin G1 (IgG1) and neutralizing antibodies but not T cell responses. Our data highlight the potential of a late boost to enhance long-term antibody and B cell immunity against MERS-CoV. Our findings on the MVA-MERS-S vaccine may be of relevance for coronavirus 2019 (COVID-19) vaccination strategies.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , Clinical Trials, Phase I as Topic , Follow-Up Studies , Humans , Vaccination , Vaccinia virus
4.
PLoS One ; 17(7): e0271066, 2022.
Article in English | MEDLINE | ID: covidwho-1928288

ABSTRACT

As ACE2 is the critical SARS-CoV-2 receptor, we hypothesized that aerosol administration of clinical grade soluble human recombinant ACE2 (APN01) will neutralize SARS-CoV-2 in the airways, limit spread of infection in the lung, and mitigate lung damage caused by deregulated signaling in the renin-angiotensin (RAS) and Kinin pathways. Here, after demonstrating in vitro neutralization of SARS-CoV-2 by APN01, and after obtaining preliminary evidence of its tolerability and preventive efficacy in a mouse model, we pursued development of an aerosol formulation. As a prerequisite to a clinical trial, we evaluated both virus binding activity and enzymatic activity for cleavage of Ang II following aerosolization. We report successful aerosolization for APN01, retaining viral binding as well as catalytic RAS activity. Dose range-finding and IND-enabling repeat-dose aerosol toxicology testing were conducted in dogs. Twice daily aerosol administration for two weeks at the maximum feasible concentration revealed no notable toxicities. Based on these results, a Phase I clinical trial in healthy volunteers has now been initiated (NCT05065645), with subsequent Phase II testing planned for individuals with SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Aerosols , Angiotensin-Converting Enzyme 2 , Angiotensins , Animals , Clinical Trials, Phase I as Topic , Dogs , Humans , Mice , Nebulizers and Vaporizers , Peptidyl-Dipeptidase A/metabolism , Renin/metabolism , Renin-Angiotensin System , SARS-CoV-2
5.
Allergy ; 77(7): 2080-2089, 2022 07.
Article in English | MEDLINE | ID: covidwho-1909311

ABSTRACT

BACKGROUND: The mRNA vaccine BNT162b2 (Comirnaty, BioNTech/Pfizer) and the vaccine candidate CVnCoV (Curevac) each encode a stabilized spike protein of SARS-CoV2 as antigen but differ with respect to the nature of the mRNA (modified versus unmodified nucleotides) and the mRNA amount (30 µg versus 12 µg RNA). This study characterizes antisera elicited by these two vaccines in comparison to convalescent sera. METHODS: Sera from BNT162b2 vaccinated healthcare workers, and sera from participants of a phase I trial vaccinated with 2, 4, 6, 8, or 12 µg CVnCoV and convalescent sera from hospitalized patients were analyzed by ELISA, neutralization tests, surface plasmon resonance (SPR), and peptide arrays. RESULTS: BNT162b2-elicited sera and convalescent sera have a higher titer of spike-RBD-specific antibodies and neutralizing antibodies as compared to the CVnCoV-elicited sera. For all analyzed sera a reduction in binding and neutralizing antibodies was found for the lineage B.1.351 variant of concern. SPR analyses revealed that the CVnCoV-elicited sera have a lower fraction of slow-dissociating antibodies. Accordingly, the CVnCoV sera almost fail to compete with the spike-ACE2 interaction. The significance of common VOC mutations K417N, E484K, or N501Y focused on linear epitopes was analyzed using a peptide array approach. The peptide arrays showed a strong difference between convalescent sera and vaccine-elicited sera. Specifically, the linear epitope at position N501 was affected by the mutation and elucidates the escape of viral variants to antibodies against this linear epitope. CONCLUSION: These data reveal differences in titer, neutralizing capacity, and affinity of the antibodies between BNT162b2- and CVnCoV-elicited sera, which could contribute to the apparent differences in vaccine efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/therapy , Clinical Trials, Phase I as Topic , Epitopes , Humans , Immunization, Passive , Peptides , RNA, Messenger , RNA, Viral , Vaccines, Synthetic , mRNA Vaccines , COVID-19 Serotherapy
6.
Trials ; 23(1): 401, 2022 May 13.
Article in English | MEDLINE | ID: covidwho-1846859

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) may be of benefit in ARDS due to immunomodulatory and reparative properties. This trial investigates a novel CD362 enriched umbilical cord derived MSC product (REALIST ORBCEL-C), produced to Good Manufacturing Practice standards, in patients with moderate to severe ARDS due to COVID-19 and ARDS due to other causes. METHODS: Phase 1 is a multicentre open-label dose-escalation pilot trial. Patients will receive a single infusion of REALIST ORBCEL-C (100 × 106 cells, 200 × 106 cells or 400 × 106 cells) in a 3 + 3 design. Phase 2 is a multicentre randomised, triple blind, allocation concealed placebo-controlled trial. Two cohorts of patients, with ARDS due to COVID-19 or ARDS due to other causes, will be recruited and randomised 1:1 to receive either a single infusion of REALIST ORBCEL-C (400 × 106 cells or maximal tolerated dose in phase 1) or placebo. Planned recruitment to each cohort is 60 patients. The primary safety outcome is the incidence of serious adverse events. The primary efficacy outcome is oxygenation index at day 7. The trial will be reported according to the Consolidated Standards for Reporting Trials (CONSORT 2010) statement. DISCUSSION: The development and manufacture of an advanced therapy medicinal product to Good Manufacturing Practice standards within NHS infrastructure are discussed, including challenges encountered during the early stages of trial set up. The rationale to include a separate cohort of patients with ARDS due to COVID-19 in phase 2 of the trial is outlined. TRIAL REGISTRATION: ClinicalTrials.gov NCT03042143. Registered on 3 February 2017. EudraCT Number 2017-000584-33.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Double-Blind Method , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Treatment Outcome
7.
Sci Transl Med ; 14(658): eabn6868, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1832330

ABSTRACT

Transmission-blocking strategies that slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect against coronavirus disease 2019 (COVID-19) are needed. We have developed an orally delivered adenovirus type 5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here, we demonstrated that hamsters vaccinated by the oral or intranasal route had robust and cross-reactive antibody responses. We then induced a postvaccination infection by inoculating vaccinated hamsters with SARS-CoV-2. Orally or intranasally vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters after SARS-CoV-2 challenge. Naïve hamsters exposed in a unidirectional air flow chamber to mucosally vaccinated, SARS-CoV-2-infected hamsters also had lower nasal swab viral RNA and exhibited fewer clinical symptoms than control animals, suggesting that the mucosal route reduced viral transmission. The same platform encoding the SARS-CoV-2 spike and nucleocapsid proteins elicited mucosal cross-reactive SARS-CoV-2-specific IgA responses in a phase 1 clinical trial (NCT04563702). Our data demonstrate that mucosal immunization is a viable strategy to decrease SARS-CoV-2 disease and airborne transmission.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adenoviridae , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Clinical Trials, Phase I as Topic , Cricetinae , Humans , RNA, Viral , SARS-CoV-2 , Severity of Illness Index
8.
10.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1666355

ABSTRACT

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Subject(s)
COVID-19 Drug Treatment , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
11.
PLoS One ; 17(1): e0262114, 2022.
Article in English | MEDLINE | ID: covidwho-1643254

ABSTRACT

BACKGROUND: Early in the SARS-CoV-2 pandemic, commentators warned that some COVID trials were inadequately conceived, designed and reported. Here, we retrospectively assess the prevalence of informative COVID trials launched in the first 6 months of the pandemic. METHODS: Based on prespecified eligibility criteria, we created a cohort of Phase 1/2, Phase 2, Phase 2/3 and Phase 3 SARS-CoV-2 treatment and prevention efficacy trials that were initiated from 2020-01-01 to 2020-06-30 using ClinicalTrials.gov registration records. We excluded trials evaluating behavioural interventions and natural products, which are not regulated by the U.S. Food and Drug Administration (FDA). We evaluated trials on 3 criteria of informativeness: potential redundancy (comparing trial phase, type, patient-participant characteristics, treatment regimen, comparator arms and primary outcome), trials design (according to the recommendations set-out in the May 2020 FDA guidance document on SARS-CoV-2 treatment and prevention trials) and feasibility of patient-participant recruitment (based on timeliness and success of recruitment). RESULTS: We included all 500 eligible trials in our cohort, 58% of which were Phase 2 and 84.8% were directed towards the treatment of SARS-CoV-2. Close to one third of trials met all three criteria and were deemed informative (29.9% (95% Confidence Interval 23.7-36.9)). The proportion of potentially redundant trials in our cohort was 4.1%. Over half of the trials in our cohort (56.2%) did not meet our criteria for high quality trial design. The proportion of trials with infeasible patient-participant recruitment was 22.6%. CONCLUSIONS: Less than one third of COVID-19 trials registered on ClinicalTrials.gov during the first six months met all three criteria for informativeness. Shortcomings in trial design, recruitment feasibility and redundancy reflect longstanding weaknesses in the clinical research enterprise that were likely amplified by the exceptional circumstances of a pandemic.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/epidemiology , Research Design/statistics & numerical data , SARS-CoV-2/drug effects , COVID-19/prevention & control , COVID-19/virology , Clinical Trials, Phase I as Topic/ethics , Clinical Trials, Phase II as Topic/ethics , Clinical Trials, Phase III as Topic/ethics , Humans , Patient Selection/ethics , Practice Guidelines as Topic , SARS-CoV-2/pathogenicity
12.
Medicine (Baltimore) ; 100(51): e28288, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1591728

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that spreads rapidly, reaching pandemic status, causing the collapse of numerous health systems, and a strong economic and social impact. The treatment so far has not been well established and there are several clinical trials testing known drugs that have antiviral activity, due to the urgency that the global situation imposes. Drugs with specific mechanisms of action can take years to be discovered, while vaccines may also take a long time to be widely distributed while new virus variants emerge. Thus, drug repositioning has been shown to be a good strategy for defining new therapeutic approaches. Studies of the effect of enriched heparin in the replication of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) in vitro assays justify the advance for clinical tests. METHODS AND ANALYSIS: A phase I/II triple-blind parallel clinical trial will be conducted. Fifty participants with radiological diagnosis of grade IIA pneumonia will be selected, which will be allocated in 2 arms. Participants allocated in Group 1 (placebo) will receive nebulized 0.9% saline. Participants allocated in Group 2 (intervention) will receive nebulized enriched heparin (2.5 mg/mL 0.9% saline). Both groups will receive the respective solutions on a 4/4 hour basis, for 7 days. The main outcomes of interest will be safety (absence of serious adverse events) and efficacy (measured by the viral load).Protocols will be filled on a daily basis, ranging from day 0 (diagnosis) until day 8.


Subject(s)
COVID-19 Drug Treatment , Heparin/therapeutic use , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Randomized Controlled Trials as Topic , Saline Solution , Treatment Outcome
13.
BMJ Open ; 11(12): e054442, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1583096

ABSTRACT

INTRODUCTION: COVID-19 is a new viral-induced pneumonia caused by infection with a novel coronavirus, SARS-CoV-2. At present, there are few proven effective treatments. This early-phase experimental medicine protocol describes an overarching and adaptive trial designed to provide safety data in patients with COVID-19, pharmacokinetic (PK)/pharmacodynamic (PD) information and exploratory biological surrogates of efficacy, which may support further development and deployment of candidate therapies in larger scale trials of patients positive for COVID-19. METHODS AND ANALYSIS: Define is an ongoing exploratory multicentre-platform, open-label, randomised study. Patients positive for COVID-19 will be recruited from the following cohorts: (a) community cases; (b) hospitalised patients with evidence of COVID-19 pneumonitis; and (c) hospitalised patients requiring assisted ventilation. The cohort recruited from will be dependent on the experimental therapy, its route of administration and mechanism of action. Randomisation will be computer generated in a 1:1:n ratio. Twenty patients will be recruited per arm for the initial two arms. This is permitted to change as per the experimental therapy. The primary statistical analyses are concerned with the safety of candidate agents as add-on therapy to standard of care in patients with COVID-19. Secondary analysis will assess the following variables during treatment period: (1) the response of key exploratory biomarkers; (2) change in WHO ordinal scale and National Early Warning Score 2 (NEWS2) score; (3) oxygen requirements; (4) viral load; (5) duration of hospital stay; (6) PK/PD; and (7) changes in key coagulation pathways. ETHICS AND DISSEMINATION: The Define trial platform and its initial two treatment and standard of care arms have received a favourable ethical opinion from Scotland A Research Ethics Committee (REC) (20/SS/0066), notice of acceptance from The Medicines and Healthcare Products Regulatory Agency (MHRA) (EudraCT 2020-002230-32) and approval from the relevant National Health Service (NHS) Research and Development (R&D) departments (NHS Lothian and NHS Greater Glasgow and Clyde). Appropriate processes are in place in order to be able to consent adults with and without capacity while following the necessary COVID-19 safe procedures. Patients without capacity could be recruited via a legal representative. Witnessed electronic consent of participants or their legal representatives following consent discussions was established. The results of each study arm will be submitted for publication in a peer-reviewed journal as soon as the treatment arm has finished recruitment, data input is complete and any outstanding patient safety follow-ups have been completed. Depending on the results of these or future arms, data will be shared with larger clinical trial networks, including the Randomised Evaluation of COVID-19 Therapy trial (RECOVERY), and to other partners for rapid roll-out in larger patient cohorts. TRIAL REGISTRATION NUMBER: ISRCTN14212905, NCT04473053.


Subject(s)
Biomedical Research , COVID-19 , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Electronics , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , State Medicine
15.
Biotechnol Bioeng ; 119(2): 663-666, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525413

ABSTRACT

Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the coronavirus disease 2019 (COVID-19) pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase® system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-severe acute respiratory syndrome coronavirus 2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for preclinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinical trial material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , CHO Cells , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Clinical Trials, Phase I as Topic/methods , Clinical Trials, Phase I as Topic/standards , Cricetulus , Pandemics , Transposases , Viral Load
16.
Trials ; 22(1): 674, 2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1448257

ABSTRACT

BACKGROUND: Moderate/severe cases of COVID-19 present a dysregulated immune system with T cell lymphopenia and a hyper-inflammatory state. This is a study protocol of an open-label, multi-center, double-arm, randomized, dose-finding phase I/II clinical trial to evaluate the safety, tolerability, alloreactivity, and efficacy of the administration of allogeneic memory T cells and natural killer (NK) cells in COVID-19 patients with lymphopenia and/or pneumonia. The aim of the study is to determine the safety and the efficacy of the recommended phase 2 dose (RP2D) of this treatment for patients with moderate/severe COVID-19. METHODS: In the phase I trial, 18 patients with COVID-19-related pneumonia and/or lymphopenia with no oxygen requirement or with an oxygen need of ≤ 2.5 liters per minute (lpm) in nasal cannula will be assigned to two arms, based on the biology of the donor and the patient. Treatment of arm A consists of the administration of escalating doses of memory T cells, plus standard of care (SoC). Treatment of arm B consists of the administration of escalating doses of NK cells, plus SoC. In the phase II trial, a total of 182 patients with COVID-19-related pneumonia and/or lymphopenia requiring or not oxygen supplementation but without mechanical ventilation will be allocated to arm A or B, considering HLA typing. Within each arm, they will be randomized in a 1:1 ratio. In arm A, patients will receive SoC or RP2D for memory T cells plus the SoC. In arm B, patients will receive SoC or RP2D for NK cells plus the SoC. DISCUSSION: We hypothesized that SARS-CoV-2-specific memory T-lymphocytes obtained from convalescent donors recovered from COVID-19 can be used as a passive cell immunotherapy to treat pneumonia and lymphopenia in moderate/severe patients. The lymphopenia induced by COVID-19 constitutes a therapeutic window that may facilitate donor engraftment and viral protection until recovery. TRIAL REGISTRATION: ClinicalTrials.gov NCT04578210 . First Posted : October 8, 2020.


Subject(s)
COVID-19 , Lymphopenia , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Immunologic Memory , Killer Cells, Natural , Lymphopenia/diagnosis , Lymphopenia/therapy , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , T-Lymphocytes , Treatment Outcome
17.
Antiviral Res ; 195: 105180, 2021 11.
Article in English | MEDLINE | ID: covidwho-1415189

ABSTRACT

Galidesivir (BCX4430) is an adenosine nucleoside analog that is broadly active in cell culture against several RNA viruses of various families. This activity has also been shown in animal models of viral disease associated with Ebola, Marburg, yellow fever, Zika, and Rift Valley fever viruses. In many cases, the compound is more efficacious in animal models than cell culture activity would predict. Based on favorable data from in vivo animal studies, galidesivir has recently undergone evaluation in several phase I clinical trials, including against severe acute respiratory syndrome coronavirus 2, and as a medical countermeasure for the treatment of Marburg virus disease.


Subject(s)
Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Pyrrolidines/pharmacology , Adenine/pharmacology , Adenosine/pharmacology , Animals , Clinical Trials, Phase I as Topic , Drug Evaluation, Preclinical , Marburgvirus/drug effects , Nucleosides/analogs & derivatives , SARS-CoV-2/drug effects
18.
Science ; 374(6566): eabj9853, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1406591

ABSTRACT

Vaccine-specific CD4+ T cell, CD8+ T cell, binding antibody, and neutralizing antibody responses to the 25-µg Moderna messenger RNA (mRNA)­1273 vaccine were examined over the course of 7 months after immunization, including in multiple age groups, with a particular interest in assessing whether preexisting cross-reactive T cell memory affects vaccine-generated immunity. Vaccine-generated spike-specific memory CD4+ T cells 6 months after the second dose of the vaccine were comparable in quantity and quality to COVID-19 cases, including the presence of T follicular helper cells and interferon-γ­expressing cells. Spike-specific CD8+ T cells were generated in 88% of subjects, with equivalent memory at 6 months post-boost compared with COVID-19 cases. Lastly, subjects with preexisting cross-reactive CD4+ T cell memory exhibited stronger CD4+ T cell and antibody responses to the vaccine, demonstrating the biological relevance of severe acute respiratory syndrome coronavirus 2­cross-reactive CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Immunologic Memory , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Clinical Trials, Phase I as Topic , Cross Reactions , Humans , Middle Aged , Vaccination , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL